中学受験の下書き

中学受験を中心に勉強法、過去問、志望校対策、併願校戦略、受験データ分析、模試平均点予想などを行っています。誤字脱字が多めです。

【中学受験算数】西暦問題 「2021は素数か?」と2020年の良問


f:id:jukenlab:20200917031534p:plain

ちょっと目先を変えた話題などを。中学受験の特徴としてその年の年号を使った問題や、計算問題の解答になったりします。で、どこの受験塾でもその年の年号がどのような数かという話は絶対するものです。

今回は算数でその年の西暦を使った問題についてです。

たとえば今年2020年の場合は2020=2x2x5x101を使って解く問題だったり、2020が含まれている問題のことです。

①2021は素数か?

答、素数ではない43x47=2021

知らないと面倒です。45x45=2025なので、2021=45x45-2x2

になることに気づいた人は43x47が2021となることに早く気が付けるでしょう。そうでない場合は全部調べる必要がありますが、45x45=2025で2021より小さいので44以下の素数で割れるかを確認すればOKです。

下1ケタが1となる場合は1x1、3x7=21、9x9=81なので、下一桁が1,3,7,9を調べれば良いのですがほぼ全部が下1ケタ1,3,7,9ですね。

44以下の素数は

2、3、5、7、11、13、17、19、23、29、31、37、41、43

なので、これを総当たりで割っていくと43x47という答えが得られます。

実は2018~2026までの数で素数はない

最近~5年先までの年号を考えると実は素数となる年号はありません。

2019、2021、2023は素数っぽい雰囲気をだしていますが、

素数ではありません。

2017→素数

2018=2x1009

2019=673x3

2020=2x2x5x101

2021=43x47

2022=2x3x337

2023=7x17x17

2027→素数

西暦問題2020の良問

西暦問題は西暦にこだわるあまり単に西暦をつかっただけという問題になることが多いのですが、2020年駒場東邦の問題はなかなか良い問題だと思います。循環小数問題として使うというところにセンスを感じます。誘導があって丁度良い難易度になっているところがまた良いです。

駒場東邦 算数 2020年[2]

f:id:jukenlab:20200917031104p:plain

解答は

https://www.inter-edu.com/files/nyushi/2020/komabatoho/komabatoho-mat-a.pdf

を参照願います。

 

参考になったよという方は応援クリックをしていただけると嬉しいです。

 ↓ ↓ ↓ 

にほんブログ村 受験ブログ 中学受験(本人・親)へ
ブログ村ランキングへ 

模試対策・復習方法について

【中学受験】模試の受け方、復習方法やら注意事項やら【合不合判定テスト/サピックス合判】 - 中学受験の下書き

合不合・サピックス合判の対策について。「偏差値の見方」「科目別対策」「親の心構え」とか。 - 中学受験の下書き

【合不合】模試の振り返りや復習は必ずやらなければならない件【サピックスオープン】 - 中学受験の下書き